1,707 research outputs found

    Bullous Allergic Hypersensitivity to Bed Bug Bites Mediated by IgE against Salivary Nitrophorin

    Get PDF
    In Central Europe, bites from the common bed bug (Cimex lectularius) are nowadays rather uncommon. Nevertheless, infestations are sometimes observed in old framehouses and by immigration due to international travel and migration. The clinical picture of bug bites substantially varies between individuals, depending upon previous exposure and the degree of an immune response. The host immune response and potential protein antigens present in the saliva of C. lectularius or specific antibodies have not been characterized thus far. We describe a patient with bullous bite reactions after sequential contact with C. lectularius over a period of 1 year. In skin tests, we observed immediate reactions to the salivary gland solution of C. lectularius, which were followed by a pronounced partially blistering late-phase response. Immunoblot analysis of the patient's serum with salivary gland extracts and recombinant C. lectularius saliva proteins revealed specific IgE antibodies against the 32kDa C. lectularius nitrophorin, but not to 37kDa C. lectularius apyrase. Our data demonstrate that bullous cimicosis may be the late-phase response of an allergic IgE-mediated hypersensitivity to C. lectularius nitrophorin

    Simulated Dynamical Weakening and Abelian Avalanches in Mean-Field Driven Threshold Models

    Full text link
    Mean-field coupled lattice maps are used to approximate the physics of driven threshold systems with long range interactions. However, they are incapable of modeling specific features of the dynamic instability responsible for generating avalanches. Here we present a method of simulating specific frictional weakening effects in a mean field slider block model. This provides a means of exploring dynamical effects previously inaccessible to discrete time simulations. This formulation also results in Abelian avalanches, where rupture propagation is independent of the failure sequence. The resulting event size distribution is shown to be generated by the boundary crossings of a stochastic process. This is applied to typical models to explain some commonly observed features.Comment: 27 pages, 9 figure

    The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy

    Get PDF
    BackgroundMosquito saliva, consisting of a mixture of dozens of proteins affecting vertebrate hemostasis and having sugar digestive and antimicrobial properties, helps both blood and sugar meal feeding. Culicine and anopheline mosquitoes diverged ~150 MYA, and within the anophelines, the New World species diverged from those of the Old World ~95 MYA. While the sialotranscriptome (from the Greek sialo, saliva) of several species of the Cellia subgenus of Anopheles has been described thoroughly, no detailed analysis of any New World anopheline has been done to date. Here we present and analyze data from a comprehensive salivary gland (SG) transcriptome of the neotropical malaria vector Anopheles darlingi (subgenus Nyssorhynchus).ResultsA total of 2,371 clones randomly selected from an adult female An. darlingi SG cDNA library were sequenced and used to assemble a database that yielded 966 clusters of related sequences, 739 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 183 protein sequences, 114 of which code for putative secreted proteins.ConclusionComparative analysis of sialotranscriptomes of An. darlingi and An. gambiae reveals significant divergence of salivary proteins. On average, salivary proteins are only 53% identical, while housekeeping proteins are 86% identical between the two species. Furthermore, An. darlingi proteins were found that match culicine but not anopheline proteins, indicating loss or rapid evolution of these proteins in the old world Cellia subgenus. On the other hand, several well represented salivary protein families in old world anophelines are not expressed in An. darlingi

    Widespread erosion on high plateaus during recent glaciations in Scandinavia

    Get PDF
    Glaciers create some of Earth’s steepest topography; yet, many areas that were repeatedly overridden by ice sheets in the last few million years include extensive plateaus. The distinct geomorphic contrast between plateaus and the glacial troughs that dissect them has sustained two long-held hypotheses: first, that ice sheets perform insignificant erosion beyond glacial troughs, and, second, that the plateaus represent ancient pre-glacial landforms bearing information of tectonic and geomorphic history prior to Pliocene–Pleistocene global cooling (~3.5 Myr ago). Here we show that the Fennoscandian ice sheets drove widespread erosion across plateaus far beyond glacial troughs. We apply inverse modelling to 118 new cosmogenic 10Be and 26Al measurements to quantify ice sheet erosion on the plateaus fringing the Sognefjorden glacial trough in western Norway. Our findings demonstrate substantial modification of the pre-glacial landscape during the Quaternary, and that glacial erosion of plateaus is important when estimating the global sediment flux to the oceans

    Selective Cysteine Protease Inhibition Contributes to Blood-feeding Success of the Tick Ixodes scapularis

    Get PDF
    Ixodes scapularis is the main vector of Lyme disease in the eastern and central United States. Tick salivary secretion has been shown as important for both blood-meal completion and pathogen transmission. Here we report a duplication event of cystatin genes in its genome that results in a transcription-regulated boost of saliva inhibitory activity against a conserved and relatively limited number of vertebrate papain-like cysteine proteases during blood feeding. We further show that the polypeptide products of the two genes differ in their binding affinity for some enzyme targets, and they display different antigenicity. Moreover, our reverse genetic approach employing RNA interference uncovered a crucial mediation in tick-feeding success. Given the role of the targeted enzymes in vertebrate immunity, we also show that host immunomodulation is implicated in the deleterious phenotype of silenced ticks making I. scapularis cystatins attractive targets for development of antitick vaccines

    An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.</p> <p>Results</p> <p>Analysis of the salivary transcriptome of the flea <it>Xenopsylla cheopis</it>, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in <it>X.cheopis</it>, the first time this family of proteins is found in any arthropod salivary transcriptome.</p> <p>Conclusion</p> <p>Analysis of the salivary transcriptome of the flea <it>X. cheopis </it>revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea <it>C. felis</it>. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.</p

    Atmospheric chemistry of Z- and E-CF3CH=CHCF3

    Get PDF
    The atmospheric fates of Z- and E-CF3CH=CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH=CHCF3) = (2.59 ± 0.47) × 10−11, k(Cl + E-CF3CH=CHCF3) = (1.36 ± 0.27) × 10−11, k(OH + Z-CF3CH=CHCF3) = (4.21 ± 0.62) × 10−13, k(OH + E-CF3CH=CHCF3) = (1.72 ± 0.42) × 10−13, k(OD + Z-CF3CH=CHCF3) = (6.94 ± 1.25) × 10−13, k(OD + E-CF3CH=CHCF3) = (5.61 ± 0.98) × 10−13, k(O3 + Z-CF3CHCHCF3) = (6.25 ± 0.70) × 10−22, and k(O3 + E-CF3CH=CHCF3) = (4.14 ± 0.42) × 10−22 cm3 molecule−1 s−1 in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH=CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH=CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH=CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH=CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH=CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH=CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E-CF3CH=CHCF3

    The transcriptome of the salivary glands of the female western black-legged tick \u3cem\u3eIxodes pacificus\u3c/em\u3e (Acari: Ixodidae)

    Get PDF
    Sequencing of an Ixodes pacificus salivary gland cDNA library yielded 1068 sequences with an average undetermined nucleotide of 1.9% and an average length of 487 base pairs. Assembly of the expressed sequence tags yielded 557 contigs, 138 of which appear to code for secreted peptides or proteins based on translation of a putative signal peptide. Based on the BLASTX similarity of these contigs to 66 matches of Ixodes scapularis peptide sequences, only 58% sequence identity was found, indicating a rapid divergence of salivary proteins as observed previously for mosquito and triatomine bug salivary proteins. Here we report 106 mostly full-length sequences that clustered in 16 different families: Basic-tail proteins rich in lysine in the carboxy-terminal, Kunitz-containing proteins (monolaris, ixolaris and penthalaris families), proline-rich peptides, 5-, 9.4- and 18.7-kDa proteins of unknown functions, in addition to metalloproteases (class PIII-like) similar to reprolysins. We also have found a family of disintegrins, named ixodegrins that display homology to variabilin, a GPIIb/IIIa antagonist from the tick Dermacentor variabilis. In addition, we describe peptides (here named ixostatins) that display remarkable similarities to the cysteine-rich domain of ADAMST-4 (aggrecanase). Many molecules were assigned in the lipocalin family (histamine-binding proteins); others appear to be involved in oxidant metabolism, and still others were similar to ixodid proteins such as the anticomplement ISAC. We also identified for the first time a neuropeptide-like protein (nlp-31) with GGY repeats that may have antimicrobial activity. In addition, 16 novel proteins without significant similarities to other tick proteins and 37 housekeeping proteins that may be useful for phylogenetic studies are described. Some of these proteins may be useful for studying vascular biology or the immune system, for vaccine development, or as immunoreagents to detect prior exposure to ticks
    • …
    corecore